skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Biggerstaff, Justin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Mechanistic niche models are computational tools developed using biophysical principles to address grand challenges in ecology and evolution, such as the mechanisms that shape the fundamental niche and the adaptive significance of traits. Here, we review the empirical basis of mechanistic niche models in biophysical ecology, which are used to answer a broad array of questions in ecology, evolution and global change biology. We describe the experiments and observations that are frequently used to parameterize these models and how these empirical data are then incorporated into mechanistic niche models to predict performance, growth, survival and reproduction. We focus on the physiological, behavioral and morphological traits that are frequently measured and then integrated into these models. We also review the empirical approaches used to incorporate evolutionary processes, phenotypic plasticity and biotic interactions. We discuss the importance of validation experiments and observations in verifying underlying assumptions and complex processes. Despite the reliance of mechanistic niche models on biophysical theory, empirical data have and will continue to play an essential role in their development and implementation. 
    more » « less